
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Solutions – Midterm Exam
(October 21st @ 5:30 pm)

Clarity is very important! Show your procedure!

PROBLEM 1 (20 PTS)
 (5 pts) Complete the following table. The numbers are unsigned integers.

Decimal BCD (bits) Binary Hexadecimal

181 0001 1000 0001 10110101 B5

59 01011001 00111011 3B

86 10000110 01010110 56

114 0001 0001 0100 01110010 72

 (5 pts) Complete the following table. The numbers are represented with 8 bits.
REPRESENTATION

Decimal 1's complement 2's complement

-50 11001101 11001110

-109 10010010 10010011

77 01001101 01001101

-86 10101001 10101010

 (5 pts) Perform the following addition and subtraction of 8-bit unsigned integers. Indicate (every carry) or borrow from c0

to c8 (or b0 to b8). For the addition, determine whether there is an overflow. For the subtraction, determine whether we
need to keep borrowing from a higher byte.

Example:

 54 + 210  77 - 194

 86 + 181  86 - 181

 (5 pts) Perform the following operations using the 2’s complement representation with 8 bits. Determine whether the

operations result in an overflow.
 -59 - 114  -86 + 114

54 = 0x36 = 0 0 1 1 0 1 1 0 +

210 = 0xD2 = 1 1 0 1 0 0 1 0

1 0 0 0 0 1 0 0 0

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=1

c 2
=1

c 1
=0

c 0
=0

77 = 0x4D = 0 1 0 0 1 1 0 1 -

194 = 0xC2 = 1 1 0 0 0 0 1 0

0 0 0 0 1 0 1 1

b
8=

1
b

7=
0

b
6=

0
b

5=
0

b
4=

0
b

3=
0

b
2=

1
b

1=
0

b
0=

0

Overflow!

Borrow out!

86 = 0x56 = 0 1 0 1 0 1 1 0 +

181 = 0xB5 = 1 0 1 1 0 1 0 1

1 0 0 0 0 1 0 1 1

c 8
=1

c 7
=1

c 6
=1

c 5
=1

c 4
=0

c 3
=1

c 2
=0

c 1
=0

c 0
=0

86 = 0x56 = 0 1 0 1 0 1 1 0 -

181 = 0xB5 = 1 0 1 1 0 1 0 1

1 0 1 0 0 0 0 1

b
8=

1
b

7=
0

b
6=

1
b

5=
0

b
4=

0
b

3=
0

b
2=

0
b

1=
1

b
0=

0

Overflow!

Borrow out!

-59 = 0xC5 = 1 1 0 0 0 1 0 1 +

-114 = 0x8E = 1 0 0 0 1 1 1 0

0x53 = 0 1 0 1 0 0 1 1

c 8
=1

c 7
=0

c 6
=0

c 5
=0

c 4
=1

c 3
=1

c 2
=0

c 1
=0

c 0
=0c8c7=1

Overflow!

-86 = 0xAA = 1 0 1 0 1 0 1 0 +

114 = 0x72 = 0 1 1 1 0 0 1 0

28 = 0x1C = 0 0 0 1 1 1 0 0

c 8
=1

c 7
=1

c 6
=1

c 5
=0

c 4
=0

c 3
=0

c 2
=1

c 1
=0

c 0
=0c8c7=0

No Overflow

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

PROBLEM 2 (10 PTS)
 A microprocessor has a 16-bit address line, where each address contains 8 bits. An SRAM device is connected to the

microprocessor. The microprocessor has assigned the addresses 0xD800 to 0xDFFF to this SRAM.

- What is the size (in KB, or MB) of this SRAM?
- What is the minimum number of bits required to represent the addresses only for this SRAM?

 The range 0xD800 to 0xDFFF is akin to all possible cases with 11 bits. Thus the SRAM size is 211 bytes = 1 KB.

 We only need 11 bits for this SRAM.

PROBLEM 3 (20 PTS)
Given the following set of instructions, complete the following:
 Register values (in hexadecimal format) as the instructions are executed.
 The state of the memory contents (in hexadecimal format) after the last instruction has been executed. Also, specify the

memory address at which the contents of D are stored (last instruction).

 The addressing mode of each instruction. Be specific, if for example the addressing mode is indexed, indicate which one in
particular. Note that the movw instruction uses two addressing modes.

1101 1000 0000 0000: 0xD800

1101 1000 0000 0001: 0xD801

...

...

1101 1111 1111 1111: 0xDFFF

Address
$00

...

$00

$00

$00A B $FADEX Y$00 $1A00

clra

clrb

ldx #$FADE

ldy #$1A00

movw #$1E20,1,Y+

ldab #$81

sex b,d

addd 1,-Y

exg x,y

std [0,X]

$00A B $FADEX Y$00 $1A01

$00A B $FADEX Y$81 $1A01

$FFA B $FADEX Y$81 $1A01

$1DA B $FADEX Y$A1 $1A00

$1DA B $1A00X Y$A1 $FADE

$1E

$20

0x1E20

0x1E21

$1D

...

0x1A00

0x1A01

$A1

Addressing Mode

Inherent

Immediate

Address where
D is stored

Immediate, Indexed - Post-Increment

Immediate

Inherent

Indexed - Pre-Decrement

Inherent

Indexed Indirect - 16 bit Offset

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

PROBLEM 4 (10 PTS)

 Mark the correct option:

 The Interrupt Vector Table contains the list of: Vector Addresses Interrupt Vectors
 The Software Interrupt (swi) is a: Maskable Interrupt Non-maskable Interrupt

 Determine whether the following statements are True or False. If the statement is false, explain why.

 Inside an Interrupt Service Routine, the values of the PC and CPU registers are pushed in the Stack.

FALSE. The ISR does not do this. The processor does this before the ISR is executed.

 An Interrupt Vector is the starting address of an Interrupt Service Routine.

TRUE

 When servicing a Reset, the values of the PC and CPU Registers are pushed in the Stack.

FALSE. The processor does not save these registers, as the Reset will initialize these values.

 Complete:

 To enable/disable all maskable Interrupts, we configure the bit _I__ of CCR.

 The /XIRQ Interrupt is enabled by setting the bit _X_ of CCR to 0.

PROBLEM 5 (20 PTS)
 (5 pts) Complete the Assembly Program below so that the state of bits 5 down to 1 on the DIP Switch is displayed only on

the 5 leftmost bits on the LEDs (PORT B). The figure shows an example on the Dragon12-Light Board: the number 10011

is shown on the five leftmost LEDs, while the other LEDs are off.

 ROMStart EQU $4000

; code section

 ORG ROMStart

Entry:

_Startup:

 LDS #$4000

 movb #$FF, DDRB

 movb #$00, DDRH

showDIPSW: ldaa PTH

 ; /* Write instructions here */

anda #$3E

lsla

lsla

 ; /* End of your instructions */

 staa PORTB ; Contents of register A are written on PORTB

 bra showDIPSW

DIP SWITCH

1

0

PTH7

PTH6

PTH5

PTH4

PTH3

PTH2

PTH1

PTH0

PORTB7

PORTB6

PORTB5

PORTB4

PORTB3

PORTB2

PORTB1

PORTB0

LEDS

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

4 Instructor: Daniel Llamocca

 (5 pts) What is the time delay (in ms) that the following loop generates? Assume a 25 MHz bus clock. Consider that pusha

takes 2 cycles, pula 3 cycles, nop one cycle and dbne 3 cycles.

ldx #56000

loop: nop ; 1 cycle

 nop ; 1 cycle

 psha ; 2 cycles

 pula ; 3 cycles

 psha ; 2 cycles

 pula ; 3 cycles

 dbne X, loop ; 3 cycles

𝑛𝑡𝑖𝑚𝑒𝑠 = 56000, 𝑛 = 15

𝑛 × 𝑛𝑡𝑖𝑚𝑒𝑠 ×
1

25 × 106 = 15 × 56000 ×
1

25 × 106 =
33.6

103

𝑇𝑖𝑚𝑒 𝐷𝑒𝑙𝑎𝑦 = 33.6 𝑚𝑠

 (10 pts) After the addd $10A0 instruction, what is the state of D and the following CCR flags: Z, C, V, and N? Does the bcs

next instruction branches to ‘next’? Yes or no? Why?

 movw #$41AC, $10A0

 ldd #$730B

 addd $10A0

 bcs next

 ...

next: ...

 N flag: MSB of the result. N = 1
 C flag: Carry out of the summation. C = 0
 Z flag: Test whether the result is 0. Z = 0.
 V flag: Overflow when the operation is treated in 2’s complement representation. V = 1

 bcs: branch if carry set. Since C = 0, then bcs next DOES NOT branch to ‘next’.

D CCR

S X H I N Z V C

D $B4B7 CCR

S X H I N Z V C

1 0 1 0

0x730B = 0 1 1 1 0 0 1 1 0 0 0 0 1 0 1 1 +

0x41AC = 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0

0xB4B7 = 1 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1

c 1
6
=0

c 1
5
=1

c 1
4
=0

c 1
3
=0

c 1
2
=0

c 1
1
=0

c 1
0
=1

c 9
=1

c 8
=0

c 7
=0

c 6
=0

c 5
=0

c 4
=1

c 3
=0

c 2
=0

c 1
=0

c 0
=0

V = c16c15=1

C = c16 = 0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

5 Instructor: Daniel Llamocca

PROBLEM 6 (20 PTS)
 Given the following Assembly code, specify the SP and the Stack Contents at the given times (right after the colored

instruction has been executed). SP and the Stack Contents (empty) are specified for the first instruction (LDS #$4000).

 Specify a value in the instruction adda that would make the branch instruction bvs branch to myloop.

0x4000

0x4001

...

...

...

0x1000

0x1001

SP

0x3FFF

...

0x400F

SP: $4000

ROMStart EQU $4000

; code section

ORG ROMStart

Entry:

_Startup: LDS #$4000

myloop: movw #$FE,2,-SP

movb #$CA,1,-SP

ldd #$BEBA

bsr myfun

leas 3,SP

adda #$80

bvs myloop

forever: bra forever

; Subroutine

myfun: pshb

psha

leas -2,SP;

movw #$FAD, SP

leas 2,SP;

pula

pulb

rts

0x4000

0x4001

...

...

...

0x1000

0x1001

$40

$11

$BE

0x3FFF

$CA

$00

$FE

...

0x400F

SP: $3FF7

0x4000

0x4001

...

...
...

0x1000

0x1001

0x3FFF

$CA

$00

$FE

...

0x400F

SP: $3FFD

0x4000

0x4001

...

...

...

0x1000

0x1001

0x3FFF

$AD

$0F

...

0x400F

SP: $3FF7

SP0x3FF7

SP

SP

0x3FF7

0x3FFD

0x4011

0x4011

0x4011

$BA

$40

$11

$BE

$CA

$00

$FE

$BA

